|
保险精算导论
要求:
一、 独立完成,下面已将五组题目列出,请按照学院平台指定的做题组数作答,每人只答一组题目,多答无效,100分;
平台查看做题组数操作:学生登录学院平台→系统登录→学生登录→课程考试→离线考核→离线考核课程查看→做题组数,显示的数字为此次离线考核所应做哪一组题的标识;
例如:“做题组数”标为1,代表学生应作答“第一组”试题;
二、答题步骤:
1. 使用A4纸打印学院指定答题纸(答题纸请详见附件);
2. 在答题纸上使用黑色水笔按题目要求手写作答;答题纸上全部信息要求手写,包括学号、姓名等基本信息和答题内容,请写明题型、题号;
三、提交方式:请将作答完成后的整页答题纸以图片形式依次粘贴在一个Word
文档中上传(只粘贴部分内容的图片不给分),图片请保持正向、清晰;
1. 完成的作业应另存为保存类型是“Word97-2003”提交;
2. 上传文件命名为“中心-学号-姓名-科目.doc”;
3. 文件容量大小:不得超过20MB。
提示:未按要求作答题目的作业及雷同作业,成绩以0分记!
题目如下:
第一组:
计算题
一、(20分)某人现年23岁,约定于36年内每年年初缴付2 000元给某人寿保险公司,如中途死亡,即行停止,所缴付款额也不退还。而当此人活到60岁时,人寿保险公司便开始给付第一次年金,直至死亡为止。试求此人每次所获得的年金额。
二、(30分)试求现年30岁每年领取年金额1200元的期末付终身生存年金的精算现值,且给付方法为:(1)按年;(2)按半年;(3)按季;(4)按月。
三、(20分)Y是x岁签单的每期期末支付1的生存年金的给付现值随机变量,已知 , , ,求Y的方差。
四、(30分)已知 。
第二组:
计算题
一、(20分)设一个随机生存群体在 岁时的生存人数 ,其中 为极限年龄, 。年利率为 。
写出均衡纯保费 的表达式。
二、(20分)设生存函数为 (0≤x≤100),年利率 =0.10,计算(保险
金额为1元):(1)趸缴纯保费 的值。(2)这一保险给付额在签单时的现值随机
变量Z的方差Var(Z)。
三、(30分)现年35岁的人购买了一份终身寿险保单,保单规定:被保险人在10年内死亡,给付金额为15 000元;10年后死亡,给付金额为20 000元。试求趸缴纯保费。
四、(30分)考虑在被保险人死亡时的那个 年时段末给付1个单位的终身寿险,设k是自保单生效起存活的完整年数,j是死亡那年存活的完整 年的时段数。 (1) 求该保险的趸缴纯保费 。(2) 设每一年龄内的死亡服从均匀分布,证明
第三组:
计算题
一、(20分)某人在30岁投保,假设生存函数在0到100间均匀分布,z为死亡赔付现值随机变量,已知利息力为0.05,求 和 。
二、(30分)设 , , , 试计算:(1) (2)
三、(20分)购买延期15年的30年定期生存年金,每年初领取20000元,设年利率为6%。换算函数为:
, ,
计算此年金的精算现值。
四、(30分)某人在30岁时投保了50000元的30年两全保险,设预定利率为6%,以中国人寿保险业经验生命表(1990-1993)(男女混合),求这一保单的趸缴净保费。
第四组:
计算题
一、(30分) 为 的余命随机变量,已知: , ,
计算概率 .
二、(30分)购买一份保额为20000元的全离散型终身寿险,已知:保费百分比费用第一年为保费的85%,以后各年为保费的15%;每千元保额的维持费第一年为30元,以后每年为10元。设年利率为6%,求毛保费。已知: ,
三、(40分)设生存函数 , .年利率为 ,
写出(1) ,(2) ,(3) 的表达式。
第五组:
计算题
一、(30分)某人在40岁时投保了一份寿险保单,死亡年年末赔付。如果在40岁到65岁之间死亡,保险公司赔付50000元;在65岁到75岁之间死亡,受益人可领取100000元的保险金;在75岁之后死亡,保险金为30000元。利用转换函数写出保单精算现值的表达式。
二、(30分)对(x)的一份3年期变额寿险,各年的死亡赔付额和死亡概率如下表所示:
K bk+1 qk+1
0 300000 0.02
1 350000 0.04
2 400000 0.06
假设预定利率为6%,计算这一保单的精算现值。
三、(40分)设年龄为35岁的人,购买一张保险金额为1 000元的5年定期寿险保单,保险金于被保险人死亡的保单年度末给付,年利率i=0.06,试计算:
(1)该保单的趸缴纯保费。
(2)该保单自35岁~39岁各年龄的自然保费之总额。
(3)(1)与(2)的结果为何不同?为什么? |
|